祖冲之圆周率,祖冲之是怎么计算出圆周率的?

2023-02-24 15:43:17 攻略信息 小恐龙

祖冲之与圆周率的故事

祖冲之是世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。

祖冲之提出的它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间,也是直到一千年以后,才由德国称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的,这是有意的捏造。

记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方越的成就。

那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和面卓首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。

在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。

祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。

要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。

通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。

因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有的小数进行15927加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。

今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。

这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。

祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过,并用最新的圆周率成果修正古代的量器容积的计算。

古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。

他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。为人们的日常生活提供了方便。

以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。

祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要花费多少时间和付出多么巨大的劳动啊!

据《隋书·律历志》记载,祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。

《隋书度量衡》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。

直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。

其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。

祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

祖冲之是怎么计算出圆周率的?

祖冲之是我国古代著名的数学家和天文学家,他在数学上最重要的成就是把圆周率的小数位史无前例地计算到第七位,这个精度在随后的800年里一直是世界第一。那时是公元480年,一切都要依靠手工计算的时代(甚至算盘可能还没有出现),算个开方都费劲,那么,祖冲之是如何算出精度这么高的圆周率呢?

圆周率并不是通过先作圆,然后量周长和直径,最后算出来的。因为这样做的误差很大,测量误差不可避免。事实上,古代数学家在很长一段时间里都是用几何方法来计算圆周率。

祖冲之算圆周率所使用的方法是刘徽发明的割圆术,这与阿基米德所用的方法有些不同。阿基米德通过做圆的外切和内接正多边形,来计算圆周率的上下限,因为边数越多的正多边形越接近于圆。

刘徽的割圆术基于圆的内接正多边形,他用正多边形的面积来逼近圆的面积。分割越多,内接正多边形和圆之间的面积越来越小,两者越来接近。无限分割之后,内接正多边形和圆将会合二为一。

如上图所示,在一个半径为r的圆中做正3×2^n(n为正整数)边形,假设其边长为a_n,即AB=a_n。AB的中点为P,连接OP交圆于C。那么,AC和BC就是正3×2^(n+1)边形的边长,可以表示为a_(n+1)。

在直角三角形AOP中,根据勾股定理:

OA^2=AP^2+OP^2

令OP=b_n,由此可得:

令PC=c_n,c_n=PC=OC-OP=r-b_n

在直角三角形APC中,根据勾股定理:

AC^2=AP^2+PC^2

由此可得:

知道正3×2^n边形的边长之后,再根据刘徽多边形面积公式,可以算出正6×2^n边形的面积。根据上述正多边形边长的迭代公式,不断的把圆分割下去,圆面积的计算精度会越来越高。

在刘徽的方法中,引入了极限和无穷小分割的思想。刘徽的方法更为巧妙,也更为简洁。刘徽算到了正3072边形,结果得到的圆周率为3.1416。

祖冲之在刘徽割圆术的基础上,算到了正24576边形,并根据刘徽圆周率不等式,确定了圆周率的下限(肭数)为3.1415926,上限(盈数)为3.1415927。并且,祖冲之还顺便给出了圆周率的一个近似分数355/113,其前六位都是正确的。

在没有计算机和算盘的帮助下,祖冲之用算筹来计算乘方和开方,硬生生地把圆周率的小数位算到了第七位,这需要极其巨大的毅力和艰苦卓绝的付出。在祖冲之的努力下,此后800年里,没有人能够算出比这精度更高的圆周率。

祖冲之如何求得圆周率?

祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。

东汉张衡推算出的圆周率值为3.162。三国时王蕃推算出的圆周率数值为3.155。魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428,皮延宗求出圆周率值为22/7≈3.14。

祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。

根据《隋书·律历志》关于圆周率(π)的记载:“宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是朒

圆周率

数(即不足的近似值),为3.1415926。

盈朒两数可以列成不等式,如:3.1415926(*)π(真实的圆周率)3.1415927(盈),这表明圆周率应在盈朒 两数之间。按照当时计算都用分数的习惯,祖冲之还采用了两个分数值的圆周率。一个是355/113(约等于3.1415927),这一个数比较精密,所以祖冲之称它为“密率”。另一个是22/7(约等于3.14),这一个数比较粗疏,所以祖冲之称它为“约率”。

祖冲之在圆周率方面的研究,有着积极的现实意义,他的研究适应了当时生产实践的需要。他亲自研究度量衡,并用最新的圆周率成果修正古代的量器容积的计算。古代有一种量器叫做“ 釜 ”,一般的是一尺深,外形呈圆柱状,祖冲之利用他的圆周率研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”, 利用“祖率”校正了数值。以后,人们制造量器时就采用了祖冲之的“祖率”数值。

祖冲之的圆周率纪录保持近1000年,他的圆周率是怎么记下来的?

祖冲之是南北朝时期著名的数学家,一生致力于钻研自然科学,首次将圆周率精确到了小数点后七位,对数学的发展做出了很大的贡献。祖冲之算出来的圆周率在3.1415926~3.1415927之间,后人也曾用他的名字命名圆周率为“祖冲之圆周率”或者“祖率”,在天文,立法等一切涉及到圆的方面都应用非常广泛。

最初刘徽创立割圆木,祖冲之在这种方法的基础上,将圆周率推算到了更加精确的程度,算出圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值介于两者之间,成为了世界上第一个将圆周率精确到如此精度的人,用这两个近视值来进行计算非常简便,也展示出我国古代数学水平发展程度之高,直到1427年阿拉伯的一位数学家才求出了更加精确的圆周率数值。关于祖冲之圆周率的记录方法,目前主要有两种说法:

一、由祖冲之所著《缀术 》记载

据说,祖冲之曾写过一本数学著作《缀术》,记录了他研究圆周率的成果以及研究方法,但当时社会对于数学的关注度并不高,认为数学是一种无用的学科,无人关注这本数学著作,以至于后来有所失传。

二、《隋书·律历志》 记载

《隋书·律历志》中有记载,“古之九数,圆周率三,圆径率一,其术疏舛。”“南徐州从事史祖冲之,以圆径一亿为一丈,...,密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。 ”这是目前正史中唯一能够找到的关于祖冲之圆周率的记载。

关于祖冲之记录圆周率的方法至今还有很多谜团。但不可否认的是,他对于我国古代数学所做出的贡献是非常巨大的。

祖冲之是如何计算圆周率的(一)

祖冲之计算圆周率,使用的方法依然是刘徽的割圆术。唯一不同的地方是,他可能掌握了独特的开平方办法。那么用割圆术这种方法,每割一次,圆周率大约可以前进几位呢?得到7位小数,需要迭代几次呢?

用数据说话,不再用复杂的微积分计算。

先引用隋书上对祖冲之的记载:

最前面是说数学很重要,日常生活中要用,研究历法、天文、音乐也要用。

然后说九数,就是现在能看到的《九章算术》编排的顺序。刘徽的割圆术就在《九章算术》的注释中出现。具体是第一章《方田》。方田讨论各种形状的土地面积,有长方形的、正方形的、三角形的、梯形的;还有圆形的、凸月形的、弓形、环形的。其中,刘徽对园田计算时的古圆周率不满意,所以开发了割圆术。

下面讲,祖冲之的伟大成就。“朒”读音是“女”第四声,意思是“亏缺,不足”。

割圆术,仍然用刘徽的方法,但数据要计算的更远。

下面是本人用电脑模仿的次序:

要得到祖冲之的结果,需要计算到至少12288边形的边长。得到24576边形的面积为:3.141592619;

按照刘徽的办法,与上一级12288边形面积3.141592516比较,

末尾四位 2619-2561 = 103;

2561+103= 2664

这样得到的范围是 3.141592616到3.141592664

最后两位分别舍去和进入,范围就是

3.1415926到3.1415927之间。

祖冲之与圆周率的故事是什么?

祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927π3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。